If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+89x+72=0
a = 9; b = 89; c = +72;
Δ = b2-4ac
Δ = 892-4·9·72
Δ = 5329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5329}=73$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(89)-73}{2*9}=\frac{-162}{18} =-9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(89)+73}{2*9}=\frac{-16}{18} =-8/9 $
| 13+7-6+4x2=2 | | 6=|7g—8 | | 2=m/4-8 | | x+2/2=4-x+3/7 | | (5+e)+(4+e)+e=35 | | 10y=48+4y | | 5=3v-7 | | 3e+9=35 | | 3(x+3)-27=-11-7 | | 0−4x=−28 | | x+7/16=1/8+x-6/2 | | (2x+4)÷2=5 | | 1/4x-1/6=3/4 | | 4(w+6)=-5(4w-3)+9w | | 8x+13=7x+6 | | |7x+1|-7=3 | | 1/3y+4=-11 | | -4(x+6)=63 | | 0.6(9x-15)+8=5.4x-1 | | 5/14x+1/2=11/7 | | 24/30=4/5=x | | 9.125=50y | | 3x-22=18+2x | | 1/5(c-3)=3/4 | | 5/3u=15 | | 5-(8f+10)=8f-5 | | 3x-22=8x+23 | | 1/5(3(x-1)+17)=x | | 3d/4=8 | | 3(4a+9)-10(a-6)=0 | | -1=t+(-19( | | 1/3x=9x |